Tag Archives: reference

CPT Codes Relevant to Neurocritical Care Practice

a

CRITICAL CARE CODES:

  • 99291 Critical care, evaluation and management of the critically ill or critically injured patient; first 30 to 74 minutes
  • 99292 each additional 30 minutes (list separately in addition to code for primary service

Document and explain why patient is critically ill.  Critically ill indicates “a high probability of imminent or life-threatening deterioration in the patient’s condition.”  Decision making and treatment must include an indication that the patient’s condition met that definition as well as considerations and plans to prevent life-threatening deterioration or organ system failure.

Code 99291 covers the initial 30 to 74 minutes on that day. Code 99292 covers the additional 30-minute time increments. Use 99292 when time totals 75 minutes or more. When using 99292, documentation should show why time was needed beyond the first hour.

Below is a list of the commonly encountered neurologic disorders that often justify use of critical care codes

  • Acute spinal cord compression or injury
  • Acute stroke
  • Coma after cardiac arrest
  • Coma of unknown etiology
  • Guillain-Barré syndrome
  • Intracerebral hemorrhage
  • Malignant intracranial pressure
  • Meningoencephalitis
  • Myasthenic crisis
  • Neuroleptic malignant syndrome
  • Paraneoplastic encephalitis
  • Status epilepticus
  • Subarachnoid hemorrhage
  • Traumatic brain injury

Notes:

  • Consulting on a patient who is critically ill is not necessarily a critical care service. The use of the critical illness code is dependent on the patient’s critical illness and the neurointensivist’s actions to address the illness.
  • The patient’s location is not key. A patient may be in the emergency department or still on a floor unit and yet be critically ill.
  • Only one neurointensivist may submit critical care code 99291 on a particular calendar date. Provider must document at least 30 minutes of critical care time. Additional time may be aggregated with a second neurointensivist from the same practice group (ie, one physician may code for the sum of time of both physicians). Or, additional time may be submitted by second neurointensivist with code 99292.
  • A physician may not aggregate time with nonphysician practitioners or residents. Nonphysician practitioner’s time is counted separately from that of any physician.
  • Rules for physician assistants vary depending on hospital, carrier or state. Some combine nurse practitioners and physician assistants under the term nonphysician practitioner.

Total time for critical care services include:

  • time spent on the patient’s unit reviewing test results or imaging studies
  • time spent discussing the patient’s case with other medical staff
  • time spent documenting critical care services
  • time spent caring for the patient in the ED or in radiology department while the patient is in radiology

Total time for critical care services does not include:

  • resident’s time and teaching sessions with residents
  • providing routine updates to the family
    • Time with a surrogate decision maker can count as critical care time if the patient is unable to give a history or make decisions. Document the discussion as necessary to determine treatment decisions, preferably summarizing the conclusions or options discussed.

Procedures bundled into CPT codes 99291 and 99292 that do not require separate coding include the following:

  • Blood draw for specimens including for blood gases
  • Gastric intubation
  • Information data stored in computers (eg, ECGs)
  • Interpretation of cardiac output measurements
  • Interpretation of chest x-rays
  • Pulse oximetry
  • Temporary transcutaneous pacing
  • Ventilator management
  • Vascular access procedures

ADDITIONAL CODES FOR PROCEDURES:

Procedures that may be coded separately include:

  • lumbar puncture
  • endotracheal intubation
  • placement of a flow-directed catheter
  • cardiopulmonary resuscitation
  • placement of a ventricular catheter
  • interpretation of an EEG
  • performance of nerve conduction studies

When performing these other procedures, use modifier 25 with the critical care codes to indicate that procedures and evaluation and management were performed on the same day.

Lumbar puncture has three different CPT codes. The three CPT codes are:

  • 62270 Spinal puncture, lumbar, diagnostic
  • 62272 Spinal puncture, therapeutic, for drainage of CSF (by needle or catheter)
  • 62273 Injection, epidural, of blood or clot patch

Neurodiagnostic and monitoring procedures for EMG, nerve conduction studies, and EEG may be coded separately.

The following monitoring and emergency procedures also are among those commonly coded separately in the critical care unit:

  • 31500 Intubation, endotracheal, emergency procedure
  • 93503 Insertion and placement of flow-directed catheter (eg, Swan-Ganz) for monitoring purposes
  • 92950 Cardiopulmonary resuscitation (eg, in cardiac arrest)

ADVANCE CARE PLANNING:

Two CPT codes allow for coding of the time spent in discussions and preparation of advance care plans.  These codes cannot be used by the same physician on the same day he or she uses CPT code 99291.  Examples of written advance directives include healthy care proxy, durable power of attorney for health care, living will and MOLST.  The two CPT codes for time spent in discussion and preparation of these forms are:

  • 99497 Advance care planning including the explanation and discussion of advance directives such as standard forms (with completion of such forms, when performed), by the physician or other qualified health care professional; first 30 minutes, face-to-face with the patient, family member(s), and/or surrogate
  • 99498 each additional 30 minutes (list separately in addition to code for primary procedure)

PROLONGED SERVCIES:

Prolonged services are not used with the primary codes 99291 and 99292. Subsequent day hospital management is coded as 99233, base time for this code is 35 minutes. When time spent exceeds base time by more than 30 minutes, physician may add a prolonged service code:

 

  • 99356 Prolonged service in the inpatient or observation setting, requiring unit/floor time beyond the usual service; first hour (list separately in addition to code for Evaluation and Management service)
  • 99357 each additional 30 minutes (list separately in addition to code for prolonged service)

TELEMEDICINE CODES:

Telemedicine is coded using the standard CPT codes plus a modifier. In January 2017, the modifier of choice changed from GT to 95. Modifier 95 identifies a “synchronous telemedicine service rendered via a real-time interactive audio and video telecommunications system.”

CPT specifies two codes for telehealth critical care:

  • 0188T Remote real-time interactive video-conferenced critical care, evaluation, and management of the critically ill or critically injured patient; first 30 to 74 minutes
  • 0189T each additional 30 minutes (list separately in addition to code for primary service)

When providing telehealth, use Place of Service 02, which is a new place of service code as of January 2017.

Patients covered by Medicare Part B are eligible for remote critical care only if they are hospitalized in a rural area.  Medicare uses different codes for remote critical care. Medicare also makes an exception by covering certain teleconsultations for acute stroke within 4.5 hours of symptom onset. The critical care telehealth codes for patients with Medicare are included in the Healthcare Common Procedure Coding System:

  • G0508 Telehealth consultation, critical care, initial, physicians typically spend 60 minutes communicating with the patient and providers via telehealth
  • G0509 Telehealth consultation, critical care, subsequent, physicians typically spend 50 minutes communicating with the patient and providers via telehealth

INTERPROFESSIONAL TELEPHONE CONSULTATIONS:

A neurointensivist might provide a telephone consultation directly with a physician who is caring for a patient at a remote hospital.  These circumstances include urgent situations where a timely face-to-face service with the consultant may not be feasible.  The codes may not be used if the consultant has or will see the patient within 14 days. This code is not to arrange for transfer of care.  The time for the service may include review of records and images if the time consulting with the primary physician is more than half of the documented time. The code may be used only once per week for the same patient by the same physician.

The CPT codes for interprofessional telephone/Internet consultations are as follows:

 

  • 99446 Interprofessional telephone/Internet assessment and management service provided by a consultative physician including a verbal and written report to the patient’s treating/requesting physician or other qualified health care professional; 5 to 10 minutes of medical consultative discussion and review
  • 99447 11 to 20 minutes of medical consultative discussion and review
  • 99448 21 to 30 minutes of medical consultative discussion and review
  • 99449 31 minutes or more of medical consultative discussion and review

OTHER NOTES:

  1. Downcoding: might happen when an attending physician’s note uses accurate language in referring to the patient as critically ill with a high probability of imminent or life-threatening deterioration, but a resident’s note on the same day makes such a statement as, “stable and may be transferred to the floor tomorrow.”
  2. Critical care may be provided on multiple days, even if no changes are made in the treatment rendered to the patient, provided that the patient’s condition continues to require the level of attention necessary in critical care. Notes that fail to change over days give the auditor the impression that the patient’s condition is stable, even if that is not true.  Details in the note should show the work accomplished and planned that day.
  3. The neurocritical care patient is at risk of imminent death due to further brain injury, which can occur unpredictably and rapidly cause multiorgan dysfunction and death.
  4. Include high-risk rationale. Emphasize specific reasons for neuroprotective strategies in critical care such as mechanical ventilation, osmolar therapy, temperature management.
  5. Document existing protocols and specific interventions in the physician’s progress notes. For example, document a 50% risk of imminent stroke or death if that is the case for that patient with new-onset vasospasm.

 

All CPT codes listed above are copyrighted.  CPT © 2018 American Medical Association. All rights reserved. CPT is a registered trademark of the American Medical Association.

b

Link to file in MS Word: CPT Codes Relevant to Neurocritical Care

Link to file in pdf:  CPT Codes Table NCC

Link to file in pdf:  CPT Codes List NCC

Reference:

Nuwer, M. and Vespa, P. (2018). Neurocritical Care Coding for Neurologists. CONTINUUM: Lifelong Learning in Neurology, 24(6), pp.1800-1809.

Advertisements

IVH Score

This score is used for patients with intracerebral hemorrhages with intraventricular extension, and is not appropriate for pure intraventricular hemorrhages.

h

In this score, each lateral ventricle is graded as:

  • 0 = no blood or small amount of layering
  • 1 = up to 1/3 filled with blood
  • 2 = 1/3 to 2/3 filled with blood
  • 3 = mostly or completely filled with blood

3rd and 4th ventricles receive a score of:

  • 0 = for no blood
  • 1 = partially or completely filled with blood

Hydrocephalus was coded as

  • 0 = absent
  • 1 = present

 

The formula for calculating the IVH score is as follows:

e

Or simplified:  3(RV+LV) + III + IV + 3(H)

 

Once the IVH score has been computed, the IVH volume can be calculated using the following formula:

f

 

To make things simpler, here is a table showing the calculated IVH volume based on the IVH score.

c

g.JPG

 

Here are two examples of IVH scores calculated for you:

ba

 

How to use the IVH Score?

With the IVH score, cutoff of 40 mL indicates poor outcome and 60 mL, mortality.

With the ICH score, cutoff is 25 mL and 30 mL respectively.

The total volume of hemorrhage can be calculated by adding the ICH volume (using the ABC/2 formula) and the IVH volume (using the ICH score).   Total volume predicts outcome better than ICH volume alone.

d

 

NOTE:  Be wary of using ICH score and IVH score to withdraw care.  Early limitation of care in ICH / IVH is a self-fulfilling prophecy which is, of course, associated with mortality.

 

Reference:

Hallevi, H., Dar, N., Barreto, A., Morales, M., Martin-Schild, S., Abraham, A., Walker, K., Gonzales, N., Illoh, K., Grotta, J. and Savitz, S. (2009). The IVH Score: A novel tool for estimating intraventricular hemorrhage volume: Clinical and research implications*. Critical Care Medicine, 37(3), pp.969-e1.

 

 

 

 

 

Stanford Antibiogram

1abcdef

 

Stanford Antibiogram

 

Reference:

Errolozdalga.com. (2018). [online] Available at: http://errolozdalga.com/medicine/pages/OtherPages/shcAntibiogram2010.pdf [Accessed 6 Nov. 2018].

Atrial Fibrillation: anticoagulate or not?

Interesting analysis from Annals of Internal Medicine.  The decision to start anticoagulation in atrial fibrillation, using CHADSVASC score is not so clear cut.  See tables below.

CaptureCapture2Capture3Capture4

 

Reference:

Shah, S., Eckman, M., Aspberg, S., Go, A. and Singer, D. (2018). Effect of Variation in Published Stroke Rates on the Net Clinical Benefit of Anticoagulation for Atrial Fibrillation. Annals of Internal Medicine.

Stress Dose Steroids

WHEN IS STRESS DOSE STEROIDS INDICATED?

  • depends on history of steroid intake and likelihood of HPA supression + type and duration of surgery
  • NONSUPPRESSED HPA AXIS: 
    • < 3 weeks of steroids at any dose
    • prednisone <5mg/daily for any duration
    • prednisone <10mg every other day
    • PLAN:  continue same regimen perioperatively; no need for cosyntropin test or stress dose steroids
  • SUPPRESSED HPA AXIS
    • prednisone >20mg/day x 3 weeks or more OR Cushingoid appearance
    • PLAN:
      • give stress dose steroids based on type and duration of surgery (see below)
  • INTERMEDIATE HPA SUPPRESSION (Unknown HPA Axis suppression, previous 3 or more intraarticular or spinal steroid injections within 3 mos prior to suregery)
    • PLAN
      • evaluate HPA axis 
        • check AM cortisol (8a.m.) after 24h off steroids
        • if <5 ug/dL – likely suppressed axis; give stress dose steroids
        • if >10 ug/dL – likely no supression; continue current dose on day of surgery
        • if 5-10 ug/dL – ACTH stim test or empiric stress dose steroids
      • ACTH stim test (standard is 250 ug):
        • if serum cortisol <18 ug/dL 30 mins after ACTH – give stress dose steroids
        • if >serum cortisol >18 ug/dL 30 mins after ACTH – no stress dose steroids

 

STEROIDS BASED ON TYPE AND DURATION OF SURGERY

MINOR PROCEDURES / LOCAL ANESTHESIA – stress dose not necessary, take AM steroids

MODERATE SURGICAL STRESS: (eg. LE revascularization, total joint replacement)

  1. take AM steroids
  2. hydrocortisone 50mg IV prior to procedure, 25mg IV q8h x 24h
  3. resums usual dose after

MAJOR SURGICAL STRESS (e.g open heart surgery, proctocolectomy, esophagogastrectomy)

  1. take AM steroids
  2. hydrocortisone 100mg IV before induction of anesthesia
  3. hydrocortisone 50mg q8h x 24h
  4. taper by half per day to maintenance dose

 

 

 

Reference:

Uptodate.com. (2018). UpToDate. [online] Available at: http://www.uptodate.com/contents/the-management-of-the-surgical-patient-taking-glucocorticoids?search=stress+dose+steroids&source=search_result&selectedTitle=1~60#H6 [Accessed 25 Mar. 2018].

MRI evolution of Cerebral Abscess

img_1682.jpg

 

Reference:

Criner, G., Barnette, R. and D’Alonzo, G. (2010). Critical Care Study Guide. Dordrecht: Springer.

 

 

Pulmonary Artery Catheter Waveforms and Normal Values

As the PAC is inserted, the following waveforms can be observed.

1. When the catheters enters the RA, a CVP tracing is seen – characterized by a and v waves.img_1652

 

 

 

 

 

 

 

 

 

2. As the catheter enters the RV, a sharp increase in systolic pressure is noted.img_1653

3. As the catheter is advanced to the pulmonary artery, an increment in diastolic pressure is seen as well as the presence of a dichromatic notch. img_1654

4. When the catheter is advanced further into the pulmonary artery, and wedged – a sine wave that oscillates with respiration is seen. img_1655

THE RA WAVEFORM:

The RA waveform is characterized by presence of 2 waves: a wave (contraction of the RA) and the v wave (passive filling of the RA).

The x descent represents RA relaxation, which is interrupted by the c wave which represents closure of the tricuspid valve.

The y descent follows the v wave, which signals the opening of the tricuspid valve and exit of blood from the RA to the RV.

img_1656

OVERDAMPING:

The wave below illustrates flushing of the catheter – which results in high pressures in the transducer (1). Flushing stops, and results in fall in pressures and an overshoot (2), and a return to normal waveform.

img_1661

The wave below – overshooting is absent, and the waveform is flattened, which is found in an overdamped waveform. Overdamping can be caused by a kinked catheter, air bubbles, fibrin clot.

img_1662

 

 

 

 

 

CATHETER WHIP.

The graph below illustrate catheter whip – where ventrcicular contractions are transmitted to the PAC.

img_1663

OVERWEDGING:

The arrow indicates when the balloon is inflated. There is a sustained increment in pressure reading.

img_1664

 

 

 

 

ACUTE MITRAL INSUFFICIENCY

Prominent v waves represent blood that enters the LA during ventricular systole due to an incompetent mitral valve.

img_1665

 

 

 

 

TRICUSPID REGURGITATION

Broad c-v waves can be seen.

img_1666

 

 

 

 

 

RV INFARCTION

Marked acute dilatation of the RV occurs. Acute dilatation is limited by the pericardium. Deep x and y descents, resembling the letter W is seen.

img_1667

 

 

 

 

 

MEASURED HEMODYNAMICS VARIABLES:

img_1648

DERIVED HEMODYNAMICS VARIABLES

img_1649

OXYGEN TRANSPORT VARIABLES

img_1650

Reference:

Criner, G., Barnette, R. and D’Alonzo, G. (2010). Critical Care Study Guide. Dordrecht: Springer.